History of Prehistory

Written by Kim Biddulph of Schools Prehistory

Checked and Approved by Professor Francis Pryor of Leicester University
Illustrations

Cover image: Farm carts beside Stonehenge c. 1885.
By unsigned (antique photograph) [Public domain or Public domain], via Wikimedia Commons.

Illustration 1: Coin of Brutus.
Published by Guillaume Rouille (1518?-1589) ("Promptuarii Iconum Insigniorum") [Public domain], via Wikimedia Commons.

Illustration 2: View of Stonehenge by William Stukeley
[Public domain], via Wikimedia Commons.

Illustration 3: The Old Ashmolean.
By Wiki alf at en.wikipedia [Public domain or Public domain], from Wikimedia Commons.

Illustration 4: Humans co-existed with the extinct cave bear, from the Museum of Comparative Anatomy and Palaeontology in Paris.
By Seriykotik (Own work) [Public domain], via Wikimedia Commons.

Illustration 5: Flint implements in Thomsen's Guide to Northern Archaeology.
Book printed by Berling brothers, Copenhagen. [Public domain], via Wikimedia Commons.

Illustration 6: Doggerland c. 10,000 BP.
By I, Polaris999, created and superimposed the image of Doggerland on the map of northern Europe created by User: Quizimodo [Public domain], via Wikimedia Commons.

Illustration 7: Excavations at the east entrance of Maiden Castle in 1935.
By Major George Allen (1891–1940) (Ashmolean Museum) [Public domain], via Wikimedia Commons.
Introduction
Prehistory in the archaeological sense refers to the pre-literate part of the human past, and not to the time of the dinosaurs, which is sometimes called prehistory by palaeontologists.

The way we think about people in the distant past before writing has changed a great deal over the last 100 years. But even before this, people were trying to work out who lived in Britain before the Romans; who were these people that Julius Caesar had so much trouble conquering and how long had they been here?

Medieval ideas of prehistory
If prehistoric artefacts, particularly flint arrowheads or axeheads, were found in this time, they were often thought to be the work of magical beings like elves, or the petrified result of lightning strikes. They were used as amulets. There were all sorts of folk tales about the prehistoric burial mounds that littered the countryside, and sometimes they were dug into in search of ancient treasure they were supposed to contain, but not in search of knowledge about the people who built them (Trigger 1989, 310).

But any idea about Britain before the Romans came mainly from the writings of Geoffrey of Monmouth who was writing around AD 1130. He decided, supposedly from earlier sources he had found, that Britain was founded by Brutus, a Trojan prince who escaped the ruination of old Troy. He backed this up by pointing out the old name for London, Trinovantum (in reality a misreading of Caesar's Gallic Wars; he actually refers to a tribe called the Trinovantes), was a corruption of Troia Nova (Clark 1981, 292-3). Even as late as 1674 Brute (an Anglicisation of Brutus) was cited as the first King of Britain in the Oxford Almanack (Daniel 1963, 26).

The beginnings of antiquarianism
Antiquarianism is the study of the past through antiquities, both objects and sites, so was a precursor of archaeology, which has a more scientific and investigative approach. Scholars started to study the remains of the past, recognising them for what they were, monuments and artefacts made by earlier humans. There was a focus on the conspicuous monuments from the pre-Roman past, which are gathered mainly in western and northern Britain where there's very little available stone for building in south and east Britain.

John Leland, was commissioned by Henry VIII to “make a Search after England's Antiquities” in 1533. He travelled around England and recorded all the locally known landmarks, both prehistoric and historic, and the stories associated with them (Chandler 1993, xii-xiii).

The Royal Society was given its royal charter in 1662 by King Charles II. Founding members included John Evelyn and Samuel Pepys, diarists during the Great Fire of London, and Christopher...
Wren and Robert Hooke. Natural philosophy, the remit of the society, was very broad, taking in all the sciences and the study of ancient artefacts and sites, too (Silver 1998, 115). Early members included John Aubrey, who revealed the stone circle at Avebury to the society and wrote a treatise on Stonehenge for the king (Hill 1988, 274). He decided that both monuments were constructed by druids (Trigger 1989, 48). Eventually the Society of Antiquaries was set up in 1707 to focus more narrowly on the study of the past (Daniel 1963, 21).

One of the early, and very active, members of the Society of Antiquaries was William Stukeley. He was the first to recognise that cropmarks in geometric shapes indicated the presence of buried remains underneath. Linear marks may be of roads, while circular ones were of burial mounds. He also started to try to work out the relative ages of things. For instance, he decided Silbury Hill, the largest man-made hill in Europe, predated Roman times (which indeed it does), because a Roman road swerves to avoid it. He still believed, though, that Stonehenge and Avebury were built by druids (Trigger 1989, 62-5).

The first collectors appeared at this time, including John Tradescant whose collection was purchased by Elias Ashmole and became the first museum, the Ashmolean in Oxford in 1675 (Trigger 1989, 47). Sir Hans Sloane’s collection became the nucleus of the British Museum, which was opened 6 years after his death in 1759. These collections were still very mixed, containing natural history specimens, anthropological objects from around the world, medieval manuscripts as well as archaeological artefacts. His collection was later divided up when the Natural History Museum and, much later, the British Library, were set up. It was by seeing the stone tools of newly discovered peoples around the world that the old elfbolts were finally recognised as being made by humans who had no knowledge of iron (Trigger 1989, 52).

The birth of archaeology
By the end of the eighteenth century the Society of Antiquaries was publishing a journal, *Archaeologia* (which is still going today), containing the results of hundreds of excavations. Excavation wasn’t particularly systematic, and the aim was to get to the centre of barrows. This time, though it was for knowledge that people dug, not just treasure. Barrows were built as burial mounds in prehistory, as well as in Roman and Saxon times. William Cunnington and his patron Sir
Richard Colt Hoare excavated 379 barrows in Wiltshire and worked out that the oldest contained only stone, whereas later ones also contained metal. They were also able to tell the difference between the original burial and later ones by using stratigraphy, but little more than this (Trigger 1989, 67).

Up until the middle of the nineteenth century the mainstream view was that the earth was created around 4000 BC (Pope Clement VIII (1536-1605) suggested 5199 BC as the year of creation in the late, while Archbishop James Ussher of Armagh (1581-1656) worked it out as 4004 BC) and was largely uninhabited until after the spread of people from the Near East around the world after the flood. Therefore it was thought that Britain hadn’t been inhabited for very long before the coming of the Romans (Trigger 1989, 31, 71. More and more evidence was making this view increasingly untenable.

William Conyers had made one of the earliest discoveries of flint artefacts with animal bones at Grays Inn Lane, London, c. 1690. He believed the flints were man-made tools and the animal an elephant (though it was more likely a mammoth). John Bagford, in 1715, accepted the conclusion but suggested the elephant was part of the Roman invasion led by the Emperor Claudius in AD 43 (Daniel 1975, 26). The association of human and extinct cave bear bones found in 1771 by Johann Esper in a cave in the German Jura was not accepted, even by the excavator, as a true association (Daniel 1963, 51).

This state of affairs continued until the finds of flints and bones of extinct animals in gravel quarries (and therefore under the gravel supposedly left by the inundation of Noah’s flood) in the Somme valley by Jacques de Perthes (Daniel 1975, 59). He was only believed after a visit by two eminent archaeologists, Joseph Prestwich and John Evans. The two came back to London and gave respective lectures to the Royal Society on 26th May and Society of Antiquaries on June 2nd 1859 (Daniel 1975, 60-1).

1859 was a momentous year in another way, for it was the year of the publication of On the Origin of Species by Charles Darwin. What had been key to the formulation of the theory of evolution, and would be a galvanising force in the study of prehistory, was the acknowledgement that the earth is older than 6000 years. Zoologists like Georges Cuvier had demonstrated that some animal remains found in earlier geological strata were of animals that had gone extinct. He suggested the world had been hit by a series of catastrophes that wiped out entire species. The geologist Charles Lyell, though, published an enormous amount of evidence that showed that geological changes were caused by the same processes seen around us now, small, gradual processes that make changes over a very long period of time (Trigger 1989, 89-92). This gave archaeologists a much larger time-frame to work with when looking at the remains of prehistoric people.
The Three Age System and seriation

The Three Age System of Stone, Bronze and Iron Ages, which is still used today, was developed in Denmark by Christian Thomsen in the early nineteenth century, though it was based on a suggestion of a Roman philosopher, Titus Lucretius Carus (98-55 BC). Thomsen found a way of getting supporting evidence for the theory by arranging a collection of coins. He was able to put them in chronological order because they mostly had dates on them. Those that didn't contain dates could usually be assigned a general date by comparing their decoration with ones that had already been sorted or, more correctly, seriated. He realised that other artefacts could be sorted according to how their shape and decoration changed over time. When the University of Copenhagen started collecting ancient artefacts, it needed someone to sort them out and Thomsen was the man to do it (Trigger 1989, 60, 75-6).

He recognised that you couldn't just sort material into stone, bronze and iron tools, as stone and bronze tools had still been used in later periods, so he had to work out which bronze objects were actually made in the Iron Age, and which stone tools were made in both metal ages. Also, which periods did the gold, glass and pottery objects belong to? He worked with groups of objects found together, in graves or hoards, to build up a characterisation of each period. He was actually able to identify five ages, with early and late Stone and Iron Ages for Danish prehistory. The museum was opened in 1819, but an account of his research wasn't published in English until 1848 (Trigger 1989, 76-8). Prehistory came of age when a Scottish archaeologist, Daniel Wilson, influenced by Thomsen and his apprentice Jens Woorsae, coined the term in The Archaeology and Prehistoric Animals of Scotland in 1851 (Trigger 1989, 80-83).

Palaeolithic archaeology

John Lubbock coined the term Palaeolithic in 1865 in his book Pre-historic Times. It referred to the old Stone Age as opposed to the Neolithic, the new Stone Age. Palaeolithic archaeology became very important in France as preservation of the evidence was so good there, both in river valleys and rock shelters. The abundance and spectacular nature of the evidence, including wall paintings and large assemblages of animal bone and man-made tools, meant that a detailed chronology could be built up for the Palaeolithic period based on developments in stone tools and the types of animals hunted for food (Trigger 1989, 94-5).
Mesolithic period

The Mesolithic was a term pioneered in the 1930s for a period that was becoming more distinct with more excavation and re-examination of stone tools museum collections. It was clear that there was quite a large a period after the ice retreated from Europe when hunter-gatherers were still roaming the land before farmers arrived (Mithen 2003, 135-6).

During the Mesolithic a large area of the North Sea was exposed for several millennia before being inundated by rising sea levels from the melting ice. It was first recognised that the bottom of the North Sea might hold interesting archaeology when the trawler Colinda dragged up a lump of peat 25 miles east of the Norfolk coast in 1931. Inside was a barbed antler point. Pollen analysis (see booklet on Archaeological Science) revealed other lumps of peat from the same area contained pollen from forests that had spanned from Yorkshire to Denmark (Mithen 2003, 150-1).

Systematic excavation

Lieutenant-General Augustus Henry Lane-Fox Pitt Rivers is known as the father of British Archaeology. He inherited a large estate in Dorset in 1880 which he proceeded to dig up, having had some experience of this earlier. For instance, in 1854 on the shores of Lake Zurich pile structures were exposed and associated with prehistoric artefacts (Daniel 1975, 89). In a paper to the Anthropological Society of London, Lieutenant-Colonel Augustus Lane Fox (as he was then) suggested that “pile dwellings” found on the bank of the River Walbrook must have been the work of pre-Roman inhabitants of London despite their association with a huge number of Roman artefacts. He could not believe that Romans would have built houses on marshy ground (Lane Fox 1867). He published the results of his work privately and commented on his systematic method of excavation:

“Excavators, as a rule, record only those things which appear to them important at the time, but... it can hardly fail to have escaped the notice of anthropologists... that, on turning back to old accounts in search of evidence, the points which would have been most valuable have been passed over from being thought uninteresting at the time. Every detail should, therefore, be recorded in the manner most conducive to facility of reference...” (quoted in Daniel 1967, 236-8).
Prehistory becomes a discipline

While barrow digging continued as the excavation of choice of so many early archaeologists in the nineteenth century, the early twentieth century was characterised mainly by the great fashion for hillfort digging, for instance T.C Hencken at Bredon Hill, Gloucestershire (1938), I.T Hughes at Midsummer Hill Camp (1924), K.M Kenyon at the Wrekin, Shropshire (1942), H St George Gray at Cadbury Camp, Somerset (1922). Hillforts are really a mixed collection of different types of monuments, some were occupied and some were not. Some are Late Bronze Age in date but most are Iron Age. The main aim was to work out the stratigraphy of the site, and so excavations were concentrated on the ramparts, particularly the entrances.

In the first half of the twentieth century a novel way of detecting archaeological sites was developed: aerial photography (Riley 1996, 7). Prehistoric sites started to be found with regularity in the countryside. Those cropmarks that had been identified by William Stukeley in the early eighteenth century could now be seen clearly and mapped.

Prehistory was now so well-defined that the Prehistoric Society of East Anglia was set up in 1908. It later became just the Prehistoric Society and still exists, publishing Proceedings every year with the latest research into prehistory around the world. The Institute of Archaeology was set up by Mortimer and Tessa Wheeler, who excavated both Roman and prehistoric sites, within the University of London in 1937 but the chair of Prehistoric Archaeology at Oxford was not inaugurated until after the Second World War (Levine 1986, 171). Up until archaeology became a discipline in universities it was the preserve of people with independent incomes who would direct unskilled labourers to actually do the digging itself.

Scientific leaps

The second half of the twentieth century was characterised by great leaps forward in scientific techniques applied to archaeological material. Radiocarbon dating, chemical analysis, palynology and stable isotope analysis have allowed archaeologists to date the prehistoric past more securely, identify what the environment was like, work out how people were making and using artefacts and even where they travelled during their lives (see Archaeological Science booklet).

These leaps were spurred on by collaborations across disciplines and increasing specialisation within archaeology due to greater numbers of people getting involved. Specific research projects are often tied in with developments in archaeological science, such as the recent project to use Bayesian statistics to re-examine radiocarbon dates from early Neolithic causewayed enclosures.
Post-modernism
It may seem odd to discuss a movement in art and literature in terms of an academic subject, but post-modernism, or post-processualism as it is called within archaeology, has affected the study of prehistory in particular. After the Second World War the theoretical aim was to identify evolutionary themes; the universal aspects of culture that would tell us about broad changes in prehistory. This was known as processual archaeology, as archaeologists were searching for universal processes. From the 1970s archaeologists started to emphasise diversity and to look for individual people's experiences rather than looking at whole cultures. Post-processualism focused on 'agency', an individual's intention and action, as the main driver for change (Trigger 1989, 329). If looked at this way, it's pretty difficult to work out any over-riding narrative for prehistory.

Professional archaeology
Archaeological 'units' were set up around the country in the 1970s. They were usually part of the local authority and excavated and recorded some of the archaeology disturbed by development in the county they were based in. Most of the units have since become commercial companies, some of them employing a couple of hundred people in various roles such as excavators, post-excavation analysts, illustrators and IT. The growth of commercial archaeology has allowed a greater number of people to take up archaeology, not just those with an independent income.

Since the development of Planning Policy Guidance 16 (PPG16) in 1990, which has since been replaced by National Planning Policy Framework (NPPF), construction companies whose developments are likely to destroy archaeological sites have to pay for them to be recorded, rather than the local authority. This has changed the view of the prehistory of Britain in two ways; by revealing a huge numbers of otherwise unknown sites with new evidence and particularly revealing sites in areas that had been thought uninhabited.

Community archaeology
The local archaeological societies that have been in existence since the nineteenth century have had a new lease of life with funding from the Heritage Lottery Fund, English Heritage and Cadw in Wales to help pay for training, buy up-to-date equipment and cover the cost of publication, an essential part of every archaeological project. Professional archaeologists are also encouraged to reach out more to the local community and involve them in excavations or other investigation happening in their local area.

Teaching ideas
Thinking about the Stone Age, which lasted a very long time, ask pupils whether they think everything was made out of stone. Obviously that wouldn't work. So why is it called the Stone Age? Stone was obviously mainly used to make very useful tools but, mainly, it doesn't rot.
Ask pupils what other materials they think people in the Stone Age used. The list could include leather, wood, fur, bone, antler and pottery (by the late Stone Age). When they have a list, get them to sort them into organic and inorganic material. Which would rot and which wouldn't?

<table>
<thead>
<tr>
<th>Organic</th>
<th>Inorganic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leather, wood, fur, bone, antler</td>
<td>Stone, pottery</td>
</tr>
<tr>
<td>Doesn't survive</td>
<td>Survives</td>
</tr>
<tr>
<td>Leather, wood, fur</td>
<td>Stone, pottery, bone, antler</td>
</tr>
</tbody>
</table>

References


